Radiation Safety Associates, Inc.
RADIATION SAFETY OFFICER
COURSE OUTLINE

THE ATOM
Atomic Structure
Elements
Isotopes

TYPES OF RADIATION
Radiation
Alpha Particles
Beta Particles
Gamma and X-rays
Neutrons
Units of Radiation Energy

RADIOACTIVITY AND DECAY
Radioactivity
Decay
Half-life: the rate of radioactive decay
Decay constant
Decay Equation
Conservation of Mass, Charge, and Energy
Methods of Radioactive Decay
Alpha decay
Beta decay
Beta minus
Positrons
Gamma rays
X rays
Isomeric transition
Internal conversion
Auger electrons
Electron capture
Chart of the Nuclides
Decay Data Tables
Radioactive Series

UNITs OF MEASURE
Radioactivity
The curie
Sub-units of the curie
Radiation
Radiation exposure vs. radiation dose
Radiation exposure: the roentgen
Absorbed dose: the rad
Dose equivalent: the rem
Dose and dose rate
Determination of dose and dose rate

RADIATION INTERACTIONS WITH MATTER
Charged Particle Interactions
Ionization
Excitation
Bremsstrahlung
Photons
Photoelectric effect
Compton scattering
Pair production
Neutron Interactions
Fast/slow neutron interactions

BACKGROUND RADIATION
Introduction
Cosmic Radiation
Radioactivity of the Earth
Radioactivity of Air
Radioactivity of Water
Radioactivity in the Human Body
Artificial (Man-made) Radioactivity
Medical and dental exposures
Nuclear reactors
Transportation
Low level waste storage
Nuclear reactor accidents
Summary

APPLICATIONS
X Ray Machines
Production
Filtering
Medical Radionuclides
Diagnosis
Therapy (radiation oncology)
Linear accelerators
Nuclear Reactors
Boiling water reactor
Pressurized water reactor
Nuclear fuel
Safety
Radiation Sterilization

Other Industrial Sources
Isotopic neutron sources
Oil well logging
Level and density gauges

BIOLICAL EFFECTS
Introduction
Cell Damage
Acute and Delayed Effects
Somatic and Genetic Effects
Linear or Threshold
Stochastic and Non-stochastic
Effects
Summary

PERSONAL DOSIMETRY
Dose Limits
Definitions
10 CFR 20 occupational dose limits
Pregnant workers
Minors
Non-radiation workers
Violations
ALARA
Personal Dosimetry
Badge placement
Film badge
Thermoluminescent dosimeter (TLD)
Pocket ion chambers
Chirpers and alarming dosimeters
Neutron dieters
Control badges
Regulatory Guide 8.13

RADIATION DETECTION AND MEASUREMENT
Gas-filled Detectors
Pulse size considerations
Ionization chambers
Proportional counters
Limited proportionality region
Geiger-Mueller (GM)
Continuous discharge region
Solid State Detectors
Scintillation detectors
Semiconductor detectors
Detector Applications
Portable survey meters
Calibration programs
Laboratory instruments
Portal monitors
Personnel contamination monitors
Whole body counters
Basic Radiation Spectroscopy
Spectrometer
Single and multi-channel analyzers

REGULATIONS AND GUIDES
History of Protective Standards
ICRU, ICRP, and NCRP
Radiation exposure concerns
Basic recommendations
Federal policy
Regulating agencies
Other Organizations
Regulations and Guides
10 CFR 19
10 CFR 20
10 CFR 30
10 CFR 40
10 CFR 70
10 CFR 71
10 CFR 74
Regulatory guides
NUREGs
American National Standards
Institute (ANSI) Standards
Information notices

EXTERNAL EXPOSURE CONTROL AND SURVEYS
ALARA
10 CFR 20
Current ALARA-related regulatory guides
Radiation Exposure Control Time
Distance Shielding
Administrative Controls Radiation work permits
Access Control
10 CFR 20
Posting and Control
10 CFR 20
Surveys
10 CFR 20
Survey Form Contents
Regulatory Guide 8.21

DISTANCE AND SHIELDING
Distance
Point sources
Line sources
Plane sources
Shielding
Beta
Gamma
Neutron

CONTAMINATION CONTROL
Radiation Vs. Contamination
Survey Methods
Loose contamination
Total contamination
Wipe Test Evaluation
Statistical Considerations in a Counting Program
Accuracy and precision
Normal probability distribution
Standard deviation
Confidence levels
Minimum detectable count rate (MDCR)
Minimum detectable activity (MDA)
Changing the MDA
Survey Frequency and Limits
Protective Clothing
Self-Frisk
Personnel Decontamination
Skin Dose Assessment
Skin dose calculation
Documentation
Survey Documentation
Posting and Control of Contaminated Areas
Equipment And Area Decontamination

AIR SAMPLING AND EVALUATION
Types of Airborne Contaminants
Sample Collection
Air Sample Accuracy
Total sample volume
Efficiency of collection medium
Counting efficiency
Representative sample
Calculation of Airborne Concentrations
Lower Limit of Detection (LLD)

INTERNAL EXPOSURE CONTROL ANDDOSE ASSESSMENT
ALARA
Annual Limit on Intake (ALI)
Derived Air Concentration Derived air concentration-hour
Assessing Body Burden
Bioassay Methods Whole body counting Radiourinalysis Fecal analysis
Bioassay Programs Calculating Internal Dose Examples of Dose Calculations
Removing Internal Contamination Required Postings
Airborne radioactivity area
Regulatory Guide 8.20
Regulatory Guide 8.32

SOURCE HANDLING TECHNIQUES/RADIOACTIVE MATERIAL CONTROL AND DISPOSAL
Definitions
Sealed source
Source material
Special nuclear material
Regulations and Procedures
10 CFR 20
10 CFR 30
10 CFR 40
10 CFR 70/74
Exempt vs. Nonexempt Quantities of Radioactive Material Responsibilities Use and Precautions Labeling
Master Index
Leak Testing
Storage Limitations
Disposal
Receiving Packages
Container Labels
Exemptions from Labeling Requirements
Disposal of Empty Radioactive Material Containers
Storage and Control Posting
Exceptions from Posting Requirements
Loss or Theft of Licensed Material Industry Events
Radioactive Waste - Definition
Radwaste Minimization
Course offered at our Hebron, Connecticut facility in rotation with other radiation safety courses. For more information, see our website at http://www.radpro.com/training/, or contact us at 860.228.0487.